The Surface Particulate Matter Network (SPARTAN): An Emerging Grassroots Global Monitoring Activity

The SPARTAN community:

>100 colleagues, >25 institutions, >15 countries

www.spartan-network.org

Fine Particulate Matter (PM_{2.5}): Atmospheric Aerosols That Affect Longevity

- Ambient PM_{2.5} leading environmental risk factor for global burden of disease with 4 million attributable deaths (Lim et al., Lancet, 2016)
- Annual global welfare costs projected to rise from US\$3 trillion in 2015 to US\$18-25 trillion in 2060 (OECD, 2016)
- Regulation of PM_{2.5} achieved the largest estimated benefits of all U.S. Federal Regulations, US Office of Management and Budget
- PM_{2.5} included in UN Sustainable Development Goals (2016)

Vast Regions Have Insufficient PM_{2.5} Measurements for Exposure Assessment

Density of Long-Term PM_{2.5} Monitoring Sites

Number of PM_{2.5} monitors per million inhabitants by country for any of the years 2010-2016.

Most countries have no PM_{2.5} monitoring

Michael Brauer Martin et al. submitted

Development of Satellite-Based Estimates of PM_{2.5}

Aerosol Optical Depth (AOD) from multiple satellite instruments and algorithms constrained with AERONET

Calculate coincident local solution to PM_{2.5} = *f*(x,y,t,AOD)

Satellite-Based PM_{2.5}

Evaluate and Enhance Satellite-Based Estimates of PM_{2.5} **Promising Results with Room for Improvement**

van Donkelaar et al., ES&T, 2016

Error likely driven by modeled relation between AOD and PM_{2.5}

Satellite-derived PM_{2.5} information source for:

Global Burden of Disease Assessments (IHME, WHO) OECD Regional Well Being Index UNICEF World Bank World Development Indicators Yale-Columbia Environmental Performance Index Range of epidemiologic studies (low PM_{2.5}, PURE-Air, diabetes, birth outcomes) Contributed to Canadian annual PM_{2.5} guideline (Crouse et al., 2012) Complex Relation of "Dry" PM_{2.5} with AOD Affected by vertical structure, aerosol properties, aerosol water Dry (35% RH) vs ambient relative humidity (RH) Ground-level vs column aerosol Elevated topography

GEOS-Chem Simulation of PM_{2.5} / AOD for 2001-2006

Model sampled coincidently with satellite observations PM_{2.5} calculated at 35% RH

van Donkelaar et al., EHP, 2010

Few Collocated Measurements of PM_{2.5} & AOD

Surface Particulate Matter Network (SPARTAN): Measures PM_{2.5} Mass & Composition at Sites Measuring AOD

Semi-autonomous PM_{2.5} & PM₁₀ Impaction Sampling Station (AirPhoton)

3-λ nephelometer (AirPhoton) Scatter AOD from Sunphotometer (e.g. AERONET)

$$\frac{\mathrm{PM}_{2.5}}{\mathrm{AOD}} = \left(\frac{b_{sp,overpass}}{\mathrm{AOD}_{overpass}}\right) \left(\frac{b_{sp,24h}}{b_{sp,overpass}}\right) \left(\frac{\mathrm{PM}_{2.5,24h}}{b_{sp,24h}}\right)$$

b_{sp} = nephelometer measurements of aerosol scatter overpass = satellite overpass time

www.spartan-network.org

Snider, Weagle, et al., AMT, 2015

SPARTAN: A Growing Global Network to Evaluate and Enhance Satellite-Based Estimates of PM_{2.5}

Globally consistent PM_{2.5} mass and composition network

www.spartan-network.org

Snider, Weagle, et al., AMT, 2015

Thanks to Site Operators

Manila, Philippines

Hanoi, Vietnam

Dhaka, Bangladesh

Buenos Aires, Argentina

Bandung, Indonesia

Data Collection and Analysis Maximizing Information from Each Filter

SPARTAN PM_{2.5} Mass and Composition (>2000 filters)

Middle contains PM_{2.5} Mass in ug/m³

Snider et al., ACP, 2016

Hygroscopicity (κ_v) Important to Relate Scatter to Mass

Middle contains PM_{2.5} Mass in ug/m³ and volume hygroscopicity coefficient. Snider, Weagle, et al., ACP, 2016

Recent and Ongoing Developments

- Cyclone inlets on sampling station and nephelometer
 - sharper size cut
 - dynamic PM_{2.5}/PM₁₀ on nephelometer
- Consistent Teflon filter media as EPA CSN and IMPROVE
- Organics (AMS, FTIR), Elements via XRF
- Additional sites to better resolve global variation
- Plans to sample MAIA sites on days of MAIA overpass
- Central nodes (e.g. connect with low-cost sensors)
- Connect with vertical profiles (e.g. aircraft campaigns, MPLNET)

M A I A Associating airborne particle types with adverse health outcomes

Ongoing Investment in QA/QC

Facilitated by Traveling Blanks (12.5% of Filters)

Periodic Collocation with Established Networks (e.g. IMPROVE, EPA, NAPS)

Collocated Measurements Test Performance

Weagle, et al., ES&T, 2018

Seek Your Ideas to Develop Collaborations to Enhance the Grass-roots Surface Particulate Matter Network and Connections with Other Networks

SPARTAN Filter Sampling Strategy

Sampling Each Day Better Characterizes Long-term Concentrations Integration with Nephelometer Yields Hourly Resolution

- Sample daily
- Cost effective
- Integrated sampling with nephelometer yields hourly PM
- Cease airflow in morning to retain semivolatiles
- More frequent filters possible (higher operating costs)

Emerging Evidence that PM_{2.5}/AOD May be Larger: Increased Global PM_{2.5} Burden

Initial Evaluation of GEOS-Chem Simulation of PM_{2.5}/AOD vs SPARTAN

Consistent with slope < 1 vs monitors outside North America; van Donkelaar et al. (2010, 2015, 2016)

Weagle et al. in prep

Adding Anthropogenic Fugitive, Combustion, and Industrial Dust to GEOS-Chem Improves Agreement with SPARTAN Dust

Natural Mineral Dust

Correlation vs SPARTAN r = 0.06 with natural dust alone r = 0.66 with natural and anthropogenic dust

Explains 10% of global population-weighted PM_{2.5}

Anthropogenic Fugitive and Combustion Dust

Philip et al., GRL, 2017

Applicability of SPARTAN for Bottom-up Source Attribution

Example Source Attribution using SPARTAN and GEOS-Chem

Weagle et al., submitted