Insights from the IMPROVE Network

Jenny Hand CIRA, Colorado State University, Fort Collins, CO

and others from CSU and NPS

Interagency Monitoring of Protected Visual Environments

http://vista.cira.colostate.edu/Improve/

Routine monitoring: aerosol chemical properties

Photo credit: Derek Day

- 24-hr samples collected every 3rd day
- PM_{2.5} inorganic anions, carbonaceous aerosols
- PM_{2.5} elemental species by XRF
- Gravimetric PM_{2.5} and PM₁₀ mass
- Coarse Mass (PM₁₀ PM_{2.5})

Aerosol mass concentration and PM_{2.5} mass budget

Species	Formula
Ammonium sulfate	AS = 1.375*sulfate ion
Ammonium nitrate	AN = 1.29*nitrate ion
Organic carbon	OC = OC1+OC2+OC3+OC4+OP
Elemental carbon	EC = EC1 + EC2 + EC3 - OP
Particulate organic mass	POM = (OM/OC)*OC OM/OC = 1.8 (historically) (monthly OM/OC)
Fine dust	FD = 1.15*(2.2[Al] + 2.49[Si] + 1.63[Ca] + 2.42[Fe] + 1.94[Ti])
Sea salt	SS = 1.8*chloride ion
Reconstructed fine mass	RCFM = AS + AN + POM + EC + FD + SS
Gravimetric mass (PM _{2.5})	FM
Residual	FM – RCFM

Trends in Residual (FM-RCFM): 2005-2010 versus 2011-2016

Hand et al., 2019

5

Multiple linear regression

$FM - EC - SS = a_{AS}AS + a_{AN}AN + a_{OC}OC + a_{dust}dust$

Seasonal mean coefficients

Assumptions about OC are increasingly important as it is now the major contributor to $PM_{2.5}$

Multiple linear regression: monthly mean

1985 - 202

Residual: Constant OM/OC vs Monthly varying OM/OC

FM > RCFM

FM ~ RCFM

Impacts on residual: Daily Network Median Residual

Red: New residual (monthly OM/OC, increased dust) Also: weigh chamber – most samples in 2019!

IMPROVE Network Charter: Subcommittees

Network Operations and Sample Analyses: Joann Rice (EPA)-

Ensure procedures outlined in the SOP and QAPP are being followed and help resolve issues. Oversees QA/QC procedures.

Data Compilation, Analysis, and Reporting: Jenny Hand (CSU)-

Developing policies for generating and distributing data, metadata, and data products. Oversees QC assessments, irregular/suspect data, generation of routine reports and data products.

Outreach and Communication: Jay Baker (WESTAR)-

Keep broader IMPROVE community informed about IMPROVE activities and monitoring data analyses. Includes site operators, scientists, federal and state regulators, and the public.

Previous Reports available on the IMPROVE website: http://vista.cira.colostate.edu/Improve/improve-reports/ Check out the new IMPROVE report draft: https://vader.cira.colostate.edu/files/improve/reports/

Acknowledgments

National Park Service Air Resources Division

contact:

jlhand@colostate.edu

IMPROVE Network Charter

PS OF IMPROVING VISIBILITY PS LARS OF IMPROVING VISIBILITY

http://vista.cira.colostate.edu/improve/wp-content/uploads/2023/01/IMPROVE-Charter.pdf

Routine monitoring: aerosol optical properties

Nephelometers are collocated at IMPROVE sites to measure ambient light scattering coefficients with finer time resolution and to provide data for evaluation of algorithms

Optical Monitoring

Download data: http://views.cira.colostate.edu/fed/

https://www.nps.gov/subjects/watchingwildlife/webcams.htm¹³

2016-2019 Annual mean gravimetric PM_{2.5} mass (FM)

Short-term FM annual mean trends

* p≤0.05

16

2016-2019 Annual mean mass: AS, AN, POM (IMPROVE and CSN)

2016-2019 Annual mean mass: FD & CM (IMPROVE and EPA)

Eastern U.S. mass concentration (µg m⁻³)

Sea Salt Dust

Impacts on residual: errors

	NRMSE		MAB		MAE		MAD		Slope		Avg Res	
	Orig	New	Orig	New	Orig	New	Orig	New	Orig	New	Orig	New
Winter	0.22	0.21	0.05	0.02	0.35	0.33	0.22	0.20	0.97	1.00	-0.14	-0.04
Spring	0.17	0.17	-0.02	-0.03	0.35	0.35	0.22	0.21	1.03	1.06	0.05	0.09
Summer	0.23	0.17	-0.10	-0.02	0.68	0.47	0.34	0.28	1.12	0.99	0.59	0.12
Fall	0.23	0.22	-0.03	-0.01	0.42	0.38	0.25	0.23	1.07	1.01	0.13	0.02
Annual	0.23	0.19	-0.04	-0.01	0.45	0.38	1.03	0.70	1.09	1.00	0.17	0.05

"New" = monthly OM/OC, 15% increase in dust Italics: errors higher

NRMSE= normalized root mean square error MAB = Mean Absolute Bias MAE = Mean Absolute Error

MAD = Mean Absolute Deviation of residual Slope (x=RCMF, y = FM) Average Residual = mean(FM-RCFM)

Northwestern U.S. mass concentration (µg m⁻³)

12

10

8

JFMAMJJASONDA

hg/m³

15

10

JFMAMJJASONDA

µg/m³

hg/m³

12

10

8

JFMAMJJASONDA

hg/m³

IMPROVE

CSN

Southwestern U.S. mass concentration (µg m⁻³)

IMPROVE

Great Basin Colorado Plateau Central Rockies Sierra Nevada Sacramento / Central Valley Utah Northwest Nevada Front Range CO 25 20 10 10 JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JEMAMJJASONDA JFMAMJJASONDA IMPROVE: Southwestern US (rural) California Coast San Jose Las Vegas CSN: Southwestern US (urban) 20 ng/m³ Nevada Front Range 👌 CO . 0 Utah Sea Salf JOSA Dust Central Rockies Sea Salt EC Sacramento Central Valley Vegas Dust JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA POM EC AN POM Los Angeles Albuquerque Southern California AS AN Los Angeles AS Albuquerqu IMPROVE Site San Diego Phoenix / Tucson IMPROVE Urban Site ug/m³ uq/m³ IMPROVE Site used ,0 1 in this report Southern West Texas / CSN Site Arizona Hawaii El Paso Texas 0 CSN Site used in this report JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA San Diego Phoenix / Tucson West Texas Hawaii Hawaii Southern Arizona Mogollon Plateau West Texas eu/br 0 JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA JFMAMJJASONDA

Sea Salt Dust EC POM AN

AS

CSN

Short-term sulfate and nitrate trends (2000-2019) Sulfate Nitrate

West

East

Short-term trends OC and EC trends (2000-2019)

West

Organic Carbon

OC Regional Mean Trend

Elemental Carbon

East

* p≤0.05

24

Annual mean short-term trends (2000-2019)

West

East

Fine Dust

AK HI NW CA SW Cen MiS NE SE VIIS US

* p≤0.05

Coarse Mass- IMPROVE

Coarse Mass- IMPROVE

