Global Particulate Matter Network

# STANDARD OPERATING PROCEDURES 

# Generating Time-Resolved $\mathbf{P M}_{2.5}$ 

Dalhousie University<br>Halifax, Nova Scotia, Canada

Prepared by: Crystal Weagle, Haihui Zhu
Revision 2.2
Updated: December 19 ${ }^{\text {th }}, 2023$

## TABLE OF CONTENTS

1.0 SCOPE AND APPLICATION ..... 3
2.0 CALCULATION OF TIME-RESOLVED PM 2.5 ..... 3
2.1 Volume growth factors ..... 3
2.2 Determining dry total scatter and $\mathrm{PM}_{2.5}$ ..... 4
3.0 DATA VALIDATION ..... 5

### 1.0 SCOPE AND APPLICATION

This SOP describes the method of combining quality assured nephelometer data (SPARTAN SOP Nephelometer Revision 2.1) with filter average $\mathrm{PM}_{2.5}$ mass concentrations (SPARTAN SOP Gravimetric Analysis Revision 3.0) and chemical composition information (SPARTAN SOP RCFM Revision 3.1) to produce hourly and daily estimates of $\mathrm{PM}_{2.5}$ concentrations. The assessment of $\mathrm{PM}_{2.5}$ hygroscopicity as described in SPARTAN SOP RCFM Revision 3.1 is site specific and time varying based on the measured chemical composition. The temporally resolved, site-specific $\kappa$-Kohler parameters for volume $\left(\kappa_{v}\right)$ are calculated and used to refine the relationship between total nephelometer scatter and $\mathrm{PM}_{2.5}$. Hygroscopic growth factors are used to estimate dry $(\mathrm{RH}=35 \%)$ hourly $\mathrm{PM}_{2.5}$ from hourly nephelometer measurements of total scatter at 550 nm at ambient relative humidity. A cut-off of $80 \%$ RH is applied to calculation of temporally-resolved $\mathrm{PM}_{2.5}$, above which hygroscopic uncertainties and total water mass dominate scatter measurements.

| REVISION HISTORY |  |  |  |
| :---: | :---: | :---: | :---: |
| Revision No. | Change Description | Date | Authorization |
| 2.0 | General reorganization and clarification; <br> update to classification of satellite <br> overpass times | August 29, <br> 2018 | Crystal Weagle |
| 2.1 | Update and clarification to data <br> validation protocol | April 9, 2020 | Crystal Weagle |
| 2.2 | Update procedure to determining dry <br> total scatter | December <br> 19,2023 | Haihui Zhu |

### 2.0 CALCULATION OF TIME-RESOLVED PM 2.5

### 2.1 Volume growth factors

The $\kappa$-Kohler parameter for the total $\mathrm{PM}_{2.5}$ mass ( $\kappa_{\mathrm{v}, \text { tot }}$ ) of each filter is determined by linear combination of mass measurements ( $m_{i}$, , assumed densities $\left(\rho_{i}\right)$, and $\kappa$-Kohler constants for each measured chemical component ( $\kappa_{\mathrm{v}, \mathrm{i}}$ ):

$$
\begin{equation*}
\kappa_{v, \text { tot }}=\frac{1}{V} \sum_{i} \frac{m_{i}}{\rho_{i}} \kappa_{v, i} \tag{1}
\end{equation*}
$$ Kohler parameter and the measured ambient relative humidity (RH):

$$
\begin{equation*}
f_{v}(\mathrm{RH})=1+\kappa_{\mathrm{v}, \text { tot }} \frac{\mathrm{RH}}{100-\mathrm{RH}} \tag{2}
\end{equation*}
$$

### 2.2 Determining dry total scatter and $\mathbf{P M}_{2.5}$

Nephelometer scatter measurements are available at three wavelengths ( $457 \mathrm{~nm}, 520 \mathrm{~nm}$, and 634 nm ). We use green light ( 520 nm ) scattering at ambient condition and the volume growth factor to estimate dry total scatter:

$$
\begin{equation*}
b_{s p, \mathrm{dry}-\mathrm{lh}}=\frac{b_{s p, \mathrm{lh}}(R H)}{f_{v}(\mathrm{RH})} \tag{3}
\end{equation*}
$$

Changes in dry scatter are proportional to changes in $\mathrm{PM}_{2.5}$ mass as,

$$
\begin{equation*}
b_{s p, \mathrm{dry}}=\alpha P M_{2.5, d r y} \tag{4}
\end{equation*}
$$

where $\alpha\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$ is the mass scattering efficiency and is a function of aerosol size distribution, effective radius, and dry chemical composition. For the determination of time-resolved $\mathrm{PM}_{2.5}$ concentrations from integrated filter samples, composition, density, and size distribution are treated as constant over the sampling period such that $\alpha$ is approximately equal to the average over sampling period $(\langle\alpha\rangle)$. Under this assumption, the predicted mass changes in low humidity ( $35 \% \mathrm{RH}$ ) are proportional to water-free ( $0 \% \mathrm{RH}$ ) scatter:

$$
\begin{equation*}
\mathrm{PM}_{2.5, \mathrm{dry}-1 \mathrm{~h}}=<\mathrm{PM}_{2.5, \mathrm{dry}}>\frac{b_{s p, \mathrm{dry}-\mathrm{lh}}}{<b_{s p, \mathrm{dry}}>} \tag{5}
\end{equation*}
$$

where the $<>$ indicates the average $\mathrm{PM}_{2.5}$ concentration measured on the $\mathrm{PTFE}^{\circledR}$ filters over the sampling period, which is typically 9 days. The explicit compensation for aerosol water is then:

$$
\begin{equation*}
P M_{2.5, d r y-1 h}=\frac{<P M_{2.5, d r y}>}{\left\langle\frac{b_{s p}(R H)}{f_{v}(R H)}\right\rangle} \cdot \frac{b_{s p-1 h}(R H)}{f_{v}(\mathrm{RH})} \tag{6}
\end{equation*}
$$

### 3.0 DATA VALIDATION

- The mass fraction of chemical components can lead to $\kappa_{v, \text { tot }}$ values $>0.6$. When this occurs, the value is flagged as suspicious and investigated for potential erroneous measurements such as very low $\mathrm{PM}_{2.5}$ mass or high value obtained from IC or ICP-MS analysis.
- To account for transient meteorological events a derivative-based screening protocol is applied to screen hourly scatter values where the change is greater than $\pm 50 \mathrm{Mm}^{-1}$ hour ${ }^{-1}$ in low $\mathrm{PM}_{2.5}$ environments and $\pm 250 \mathrm{Mm}^{-1}$ hour ${ }^{-1}$ in high $\mathrm{PM}_{2.5}$ environments. Values exceeding the threshold are not used to estimate hourly $\mathrm{PM}_{2.5}$.
- Under the circumstance that a filter-specific $\kappa$-Kohler parameter is not available (e.g. all chemical analysis is not complete), a default value of 0.2 is used in Eq. 2 until a filterspecific value is available.
- Under the circumstance that a nephelometer is operating without coincident filter sampling, dry scatter is estimated with Eq. 4 using the site average mass scattering efficiency. The resulting time-resolved $\mathrm{PM}_{2.5}$ is considered preliminary and should not be used for research purposes.
- When the hourly-averaged ambient relative humidity, as recorded by the nephelometer, exceeds $80 \%$ the $\mathrm{PM}_{2.5}$ is not estimated as hygroscopic uncertainties increase, and water mass dominates the scatter measurement.

This SOP corresponds to data version 1.1 of the Time Resolved $\mathrm{PM}_{2.5}$.

