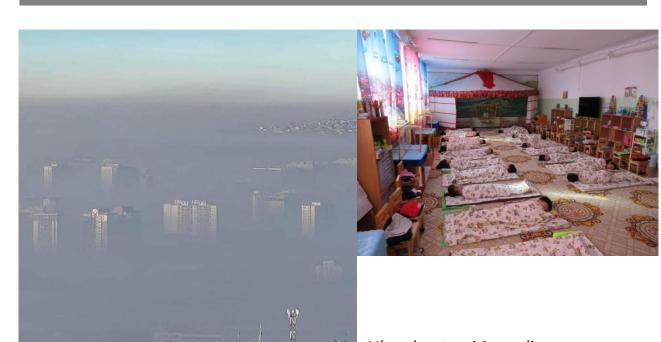
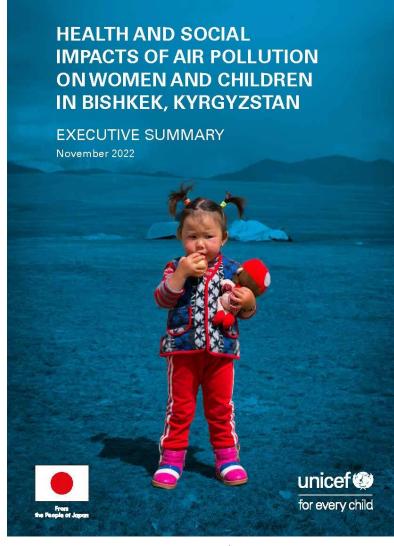
Perspectives from Lab, Network, and Field Measurements


Title implies "Everything but the Kitchen Sink"...

... so here's the Kitchen Sink!

Jay R. Turner

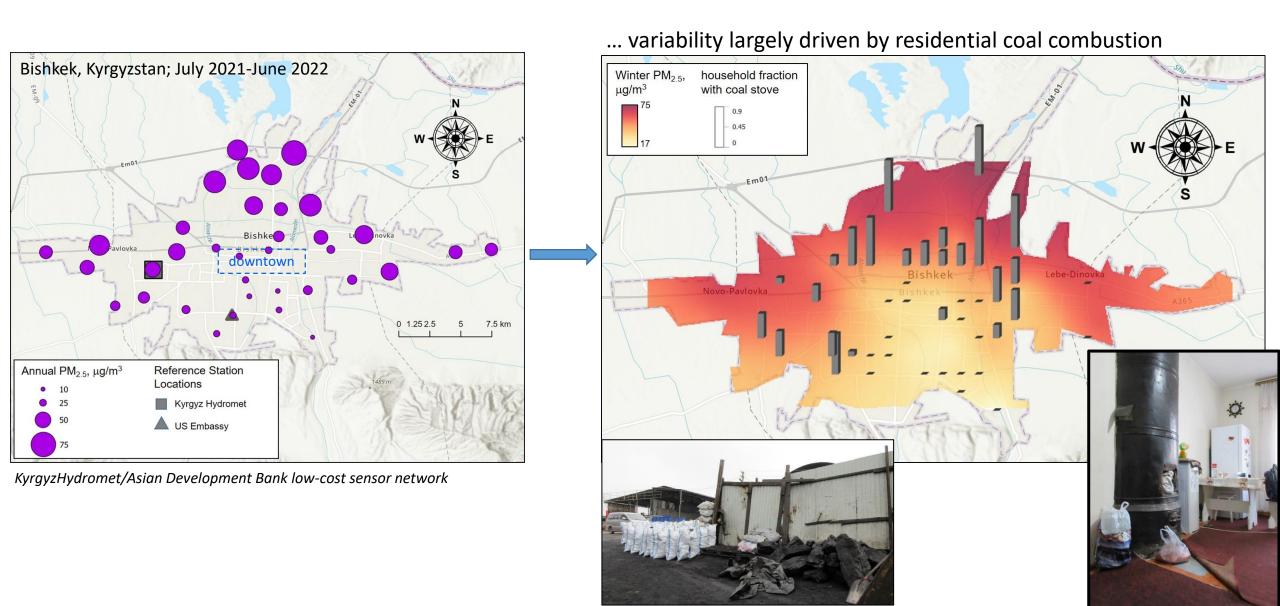
Professor of Energy, Environmental & Chemical Engineering James McKelvey Professor of Engineering Education Vice Dean for Education, McKelvey School of Engineering Washington University in St. Louis / USA

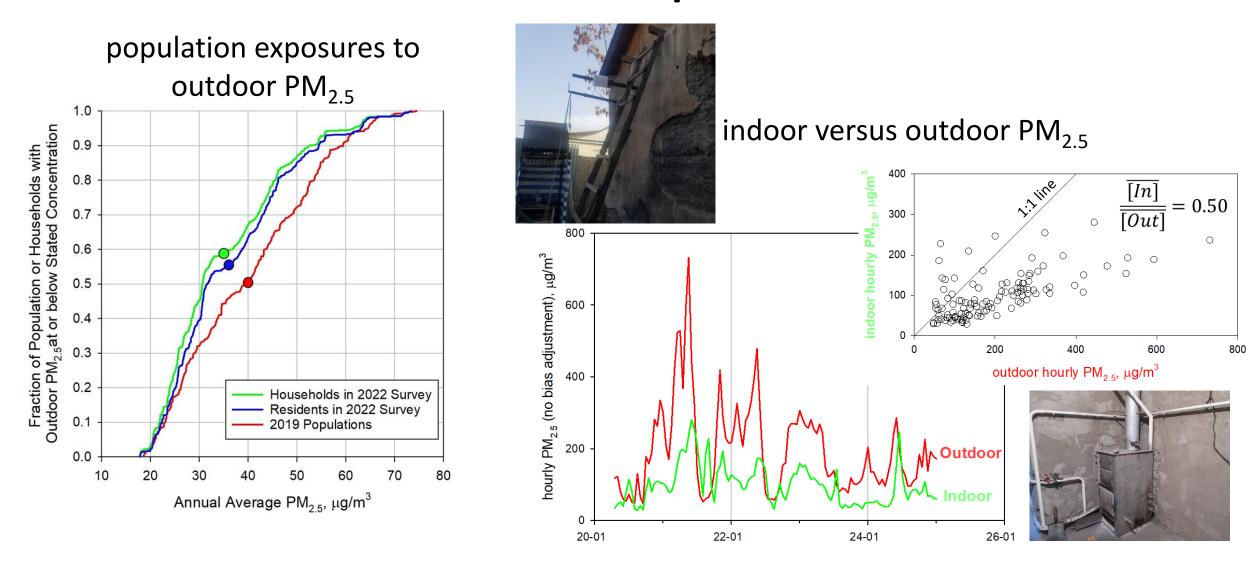

Our Work in Asia

Mongolia

- Heating stove replacement program impact assessment (US Gov't)
- Forecasting health impacts of air pollution control scenarios (Mongolian Gov't)
- Children's exposures to air pollution (UNICEF)... Zhiyao Li dissertation

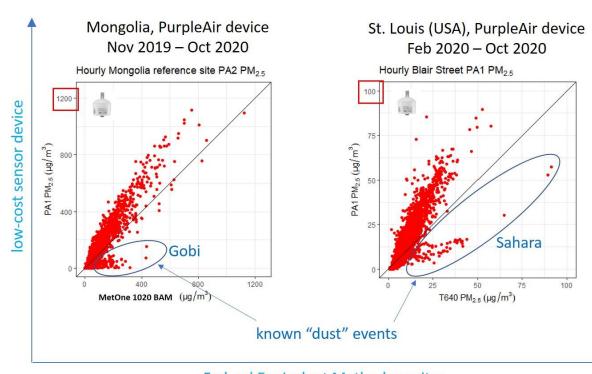
Central Asia


- US State Department Air Quality Fellow supporting US Embassy Tashkent
- Central Asian Universities Air Quality Knowledge Hub (US State Dept through American Councils)
- Air Quality Conceptual Models for Uzbekistan (McDonnell Academy Global Incubator Seed Grant)... Xuan to Tashkent, June 2023
- Health and social impacts of air pollution in Bishkek, Kyrgyzstan (UNICEF)
- Feasibility of air quality low-cost sensor networks in Tajikistan (UNEP pending)

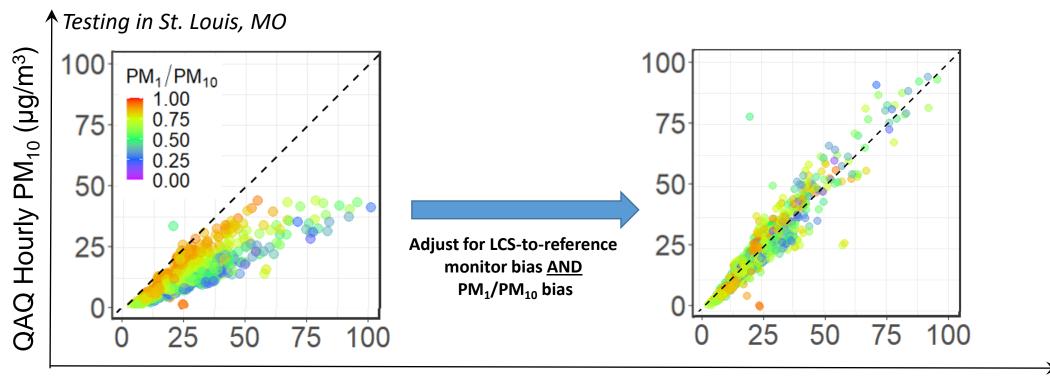

UNICEF Kyrgyzstan Project with:

- M-Vector
- Rufus Edwards, University of California-Irvine
- Rahat Sabyrbekov, American University in Central Asia

High intraurban variability in many Central Asian cities...


From Ambient Concentrations to Exposures

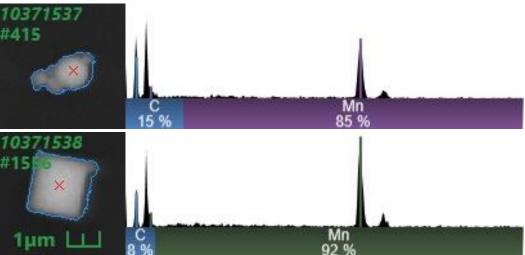
ambient $PM_{2.5}$ concentrations, $PM_{2.5}$ indoor/outdoor ratios, and time-activity data \rightarrow exposures


Reflection #1 – "Low-Cost Sensors" (LCS)

- Nephelometer-based LCS now well understood
- PM_{2.5} measurements
 - Accumulation mode truncation (cannot see the small particles)
 - Insensitivity above $^{\sim}1~\mu m$ (cannot quantify the large particles)
- PM₁₀ measurements (and dust contributions to PM_{2.5}
 - Interpret AQ-SPEC test results with extreme caution!

Reflection #1 – "Low-Cost Sensors" (LCS) for PM₁₀

- Many issues, e.g., particle size and wind speed dependent aspiration efficiency
- QuantAQ (QAQ) Modulair-PM
 - Two LCS nephelometer and optical particle counter
 - Not a low-cost <u>device</u>, ~\$1,500 + \$300/year


Reflection #2 – "Computer-Controlled SEM (CCSEM)

Totals

100.0

Discussed at 2022 Spartan Meeting

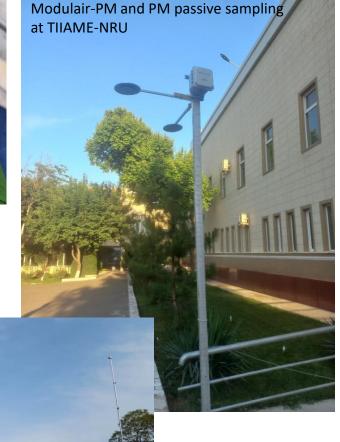
- 1	-	8 %			
Carbon	is from	the suk	ostrate,	not the	PΝ

Mass Discribation by Average Diameter (mittions)											
		0.2	1.0	2.5	5.0	10.0	20.0	50.0			
		-	-	-	-	-	-	-			
Classes	Mass %	1.0	2.5	5.0	10.0	20.0	50.0	75.0			
Mn-Si-S-Ca	1.7	0.0	0.0	2.4	5.8	31.6	60.2	0.0			
Mn-Si-S-Fe	4.3	0.0	0.0	0.1	0.6	13.4	85.9	0.0			
Mn-S-Si	0.2	0.0	2.2	4.6	29.7	63.5	0.0	0.0			
Mn-S-Ca	0.1	0.0	1.0	3.3	95.7	0.0	0.0	0.0			
Mn(Si-Al)	0.0	0.0	3.3	96.7	0.0	0.0	0.0	0.0			
Mn-Fe-Cl	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0			
Si-Al(Mn)	0.2	0.0	0.2	3.1	10.2	86.6	0.0	0.0			
Fe-Si-Mn	0.1	0.0	0.0	17.4	82.6	0.0	0.0	0.0			
Fe-S-Mn	0.0	1.0	31.2	67.9	0.0	0.0	0.0	0.0			
Mn-S	0.5	0.0	0.6	5.7	27.9	65.8	0.0	0.0			
Mn(Fe)	0.1	0.1	3.2	1.7	95.0	0.0	0.0	0.0			
Fe(Mn)	0.0	0.0	5.8	94.2	0.0	0.0	0.0	0.0			
Mn-Cl	0.0	1.5	41.1	57.5	0.0	0.0	0.0	0.0			
Mn-rich	0.0	7.2	92.8	0.0	0.0	0.0	0.0	0.0			
Mn-bearing	0.4	0.0	0.2	2.5	19.7	77.6	0.0	0.0			
Other	92.4	0.0	0.2	1.0	4.5	15.8	78.6	0.0			

Mass Distribution by Average Diameter (microns)

Reflection #2 - "Computer-Controlled SEM (CCSEM)

Following the 2022 Spartan meeting...


- Improvement to substrates, now better measure carbon (RJ Lee Group, USEPA)
- Access to considerable time on USEPA's CCSEM
- Tashkent, Uzbekistan
 - Two-week integrated sampling
 - Collected ten (10) samples in Tashkent
 - Will be collecting samples in Bukhara and Nukus (near Aralkum Desert)
 - CCSEM analysis in August 2023

Perhaps CCSEM of interest for Select Spartan sites?

Uzbekistan AQ monitoring stations

2 as of 2021 6 more delivered

Spartan Core Measurements and Ancillary Projects (Measurements)

add to data or support
add to data or support
interpretation of data
towards meeting Spartan objectives

provide additional context for Spartan data/sites more broadly contribute to global AQ estimation and impacts

leverage Spartan sites infrastructure