Network status and methodological advancements

Chris Oxford
Post-doc
SPARTAN laboratory operations
Network status
our world in April 2018
SPARTAN: Maximizing Information from Each Filter
Continue to Develop Analysis Stream

Pre-weigh filters → Ship & sample → Post-weigh filters

Black carbon and organics (HIPS and FTIR)
Partnership with UC Davis (Ann Dillner and Nicole Hyslop)

Trace elements (XRF)
Led by Xuan Liu in partnership with Jay Turner (WashU) & UC Davis (Jason Giacomo)

Black & brown carbon (UV-Vis)
Partnership with Joshin Kumar, Sam Black, and Rajan Chakrabarty (WashU)

Black carbon (IBR)
Partnership with Michael Brauer (UBC)

Soluble ions (IC)

Organics (AMS)
Led by Yuxuan Ren in partnership with Jhao-Hong Chen and Brent Williams (WashU)

Oxidative potential?
Led by Vishal Verma (UIUC)

Overall operations led by Chris Oxford
Supported by Summer Liu, Zilin Wei, Kyla Fung, Haihui Zhu

www.spartan-network.org
Methodological advancements
documenting returning cartridges

• In the past, we tried to write in words our observations

• Picture of all filters with field blank taken of every cartridge

• Can help trouble shoot errors that can occur with wrong filters in petri dishes…

• Nice visual record of all sampled filters.
SPARTAN: Maximizing Information from Each Filter
Continue to Develop Analysis Stream

Pre-weigh filters → Ship & sample → Post-weigh filters

Black carbon and organics (HIPS and FTIR)

Trace elements (XRF)

Black & brown carbon (UV-Vis)

Black carbon (IBR)

Soluble ions (IC)

Organics (AMS)

Oxidative potential?

Led by Xuan Liu in partnership with Jay Turner (WashU) & UC Davis (Jason Giacomo)

Led by Yuxuan Ren in partnership with Jhao-Hong Chen and Brent Williams (WashU)

Led by Vishal Verma (UIUC)

Partnership with UC Davis (Ann Dillner and Nicole Hyslop)

Partnership with UC Davis (Ann Dillner and Nicole Hyslop)

Partnership with Joshin Kumar, Sam Black, and Rajan Chakrabarty (WashU)

Partnership with Michael Brauer (UBC)

Overall operations led by Chris Oxford

Supported by Summer Liu, Zilin Wei, Kyla Fung, Haihui Zhu

www.spartan-network.org
Methodological advancements
Weighing chamber

\[T_{\text{chamber}} = 21.5 \, ^\circ\text{C} \pm 0.18 \]
\[\text{RH}_{\text{chamber}} = 35\% \pm 2.7 \]

\[T_{\text{scales}} = 21.5 \, ^\circ\text{C} \pm 0.19 \]
\[\text{RH}_{\text{scales}} = 35\% \pm 3.4 \]

\[T_{\text{room}} = 21.5 \, ^\circ\text{C} \pm 0.75 \]
\[\text{RH}_{\text{room}} = \text{uncontrolled} \]
For each filter
 Tare
 3 measures of filter mass
 4 measures of empty pan mass

Additionally, each weighing session includes
 On initiation and ending plus every 4 hours
 calibration of scales
 weighing of working standards (100, 200, and 400 μg)
 weighing of reference filters (3)

RH and T recorded at all times including when not weighing

Net weight precision
σ = 0.657 μg

Field blank (N = 102)
μ(net) = +2.15 μg
SPARTAN: Maximizing Information from Each Filter
Continue to Develop Analysis Stream

Pre-weigh filters → Ship & sample → Post-weigh filters

- Black carbon and organics (HIPS and FTIR)
 Partnership with UC Davis (Ann Dillner and Nicole Hyslop)

- Trace elements (XRF)
 Led by Xuan Liu in partnership with Jay Turner (WashU) & UC Davis (Jason Giacomo)

- Black & brown carbon (UV-Vis)
 Partnership with Joshin Kumar, Sam Black, and Rajan Chakrabarty (WashU)

- Black carbon (IBR)
 Partnership with Michael Brauer (UBC)

- Soluble ions (IC)
- Oxidative potential?
 Led by Yuxuan Ren in partnership with Jhao-Hong Chen and Brent Williams (WashU)

- Organics (AMS)
 Led by Vishal Verma (UIUC)

Overall operations led by Chris Oxford
Supported by Summer Liu, Zilin Wei, Kyla Fung, Haihui Zhu

www.spartan-network.org
Methodological advancements
Image based reflectance

- Now record Image based reflectance
- Every filter photographed with standard background
- Reflectance measurements possible
- Provides a nice visual record of each sampled filter
SPARTAN: Maximizing Information from Each Filter
Continue to Develop Analysis Stream

Pre-weigh filters → Ship & sample → Post-weigh filters

Black carbon and organics (HIPS and FTIR)
Partnered with UC Davis (Ann Dillner and Nicole Hyslop)

Trace elements (XRF)
Led by Xuan Liu in partnership with Jay Turner (WashU) & UC Davis (Jason Giacomo)

Black & brown carbon (UV-Vis)
Partnered with Joshin Kumar, Sam Black, and Rajan Chakrabarty (WashU)

Black carbon (IBR)
Partnered with Michael Brauer (UBC)

Soluble ions (IC)

Organics (AMS)
Led by Yuxuan Ren in partnership with Jhao-Hong Chen and Brent Williams (WashU)

Oxidative potential?
Led by Vishal Verma (UIUC)

Overall operations led by Chris Oxford
Supported by Summer Liu, Zilin Wei, Kyla Fung, Haihui Zhu
Old sonication method had residual filters for ICP-MS

New sonication method
- Place filter in 5.8 ml water; 0.2 ml Methanol
- Sonicate; filter destroyed; aerosol suspended in extract
- Syringe filter removes suspension
Methodological advancements
extractions and Ion Chromatography (IC)

- Extractions create
 - 4 ml extractant in plastic vial for IC
 - 2 ml extractant in glass vial for AMS
 - Syringe filter

- IC uses 1 ml to 1.5 ml. remaining extract is placed in refrigerated storage

- AMS has 2 ml for analysis

- Syringe filter in frozen storage

- Can we do more?
Methodological advancements
extractions and Ion Chromatography (IC)

• All glassware and plasticware
 – Single methanol rinse
 – (3x) DI water rinse
 – Tamp dry before allowing to fully dry

• Extraction vials and AMS vials
 – 24 hours in nitric acid
 – 5 hours in oven at 500 C
Dual Integrion IC system:
 dedicated anion and cation systems run simultaneously
 (3 cartridges) per day

Anions detected: Cl\(^-\), NO\(^-\), Br\(^-\), NO\(_3\)\(^-\), SO\(_4\)\(^{2-}\)
Cations detected: Na\(^+\), NH\(_4\)\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\)

8 level standards (anion, cation) are made bi-weekly for calibration
Manual QC checks
- Is the correct background subtraction used?
- Are all curves integrated correctly?
- Are all curves correctly assigned to components?
- Are R^2 above 0.995 for all components?

Automated QC checks
- Are water concentrations below 10*MDL?
- Are the QC concentrations within +/- 10%?
- Is R^2 above 0.995 for all components?

Sodium 0.62 μg (95%)
Ammonium 0.37 μg (95%)
Nitrate 2.4 μg (95%)
Sulfate 0.96 μg (92%)
Network status
our world in 2023

- Our world is growing!
 - Most active sites

- Active/Inactive
 - Room to grow

- Pie charts
 - Colors changing
 - Component based

As of May 2023
Methodological advancements
extractions and Ion Chromatography (IC)

• Improvements with new chamber and scales

• Photographic documentation of filters, including on calibrated backgrounds

• Dedicated IC with quality checks

• Growing network