

Global Particulate Matter Network

CARBONACEOUS AEROSOL MEASUREMENTS ON SPARTAN FILTER SAMPLES

Ann M. Dillner, Jason Giacomo, Chelsey Li, Naveed Anwar UCDAVIS AIR QUALITY RESEARCH CENTER 4th International SPARTAN Meeting Washington University in St. Louis May 18, 2023

Carbonaceous aerosol measurements in SPARTAN

- Organic carbon (OC) and elemental carbon (EC)
 - IMPROVE, U.S. monitoring network, measures EC and OC
 - Thermal Optical Reflectance (TOR)
 - Quartz Filters, destructive analysis
 - SPARTAN collects only Teflon filters for multiple measurements
- FT-IR reproduce TOR OC and EC on Teflon filters
 - Inexpensive and non-destructive
 - Uses ambient OC and EC data to calibrate FTIR
 - Method developed for IMPROVE (Debus et al., 2022)
 - TOR OC and EC one year at select MAIA sites to improve SPARTAN and MAIA measurements
- HIPS
 - IMPROVE measures light absorption, related to EC or BC
 - measure light absorption on SPARTAN and MAIA filters

FTIR measures carbonaceous aerosol from Teflon filters

FTIR measures carbonaceous aerosol from Teflon filters

FT-IR lab in Air Quality Research Center At UC Davis

- Routinely analyze Teflon filters by FT-IR
 - SPARTAN ~2000 filters since 2018
 - MAIA ~150 samples since 2022
 - IMPROVE ~130,000 filters since 2015
 - CSN ~75,000 filters since 2017-2022
 - SEARCH ~5000 filters (2009-16)
 - Lab studies and field campaigns
- Methods
 - 5 minutes per filter, ~40 hrs/wk
 - 3 FT-IR instruments
 - Weekly QC
 - Analyzed prior to XRF (Wash U)

Light Absorption

Analysis performed by HIPS

<u>Hybrid</u> Integrating Plate/Sphere

Absorptance: A = 1 - T/(1 - R)

HIPS data reported as inferred atmospheric absorption coefficient:

$$Fabs \equiv \frac{f}{V} ln\left(\frac{1-r}{t}\right)$$

f = filter deposit area,

V = volume of air sampled

Fabs reported in units of (Mm)⁻¹

IMPROVE samples since 1988 SPARTAN samples since 2018

UCDAVIS

White, W. H., Trzepla, K., Hyslop, N. P., Schichtel, B. A. 2016. Aerosol Science and Technology, 50:9, 984-1002.

Relationship between light absorption and EC

- Light absorption caused by
 - EC (primarily)
 - Fe
 - Some organics
- Light absorption efficiency varies with composition
- Convert Fabs to μg/m³ EC
 - Assume absorption efficiency of 10
- Useful to QC FT-IR EC measurements

QC for functional groups and OC

- Unlike EC, OC has no independent measurement for QC
- Compare sum of components
 to mass
- Figure suggests some over prediction of functional groups
- Working to improve functional groups, especially sites with high soil and high nitrate

FT-IR spectra of SPARTAN samples

Functional Group Measurements

Rehovot, Israel, Jan 2021 – June 2022

Dhaka, Bangladesh, Jan 2021- Sept 2021

Measuring Carbon by FT-IR and HIPS for SPARTAN

- FT-IR and HIPS are non-destructive, fast, low-cost method
- Use Teflon filter (SPARTAN sampling)
- Measure organic carbon and elemental carbon
 - OC and EC using FT-IR
 - Calibrate to IMPROVE, next calibrate to MAIA TOR samples
- Measure light absorption for optical measurement and to QC FT-IR EC
- Measure organic functional groups
 - Same FT-IR spectra as OC and EC
 - Composition of OM
 - Sources

UCDAV